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Abstract: Fault classification in electric power system is vital for secure operation of power systems. It has to be
accurate to facilitate quick repair of the system, improve system availability and reduce operating costs due to
mal-operation of relay. Artificial neural networks (ANNs) can be an effective technique to help to predict the
fault, when it is provided with characteristics of fault currents and the corresponding past decisions as
outputs. This paper describes the use of particle swarm optimisation (PSO) for an effective training of ANN
and the application of wavelet transforms for predicting the type of fault. Through wavelet analysis, faults are
decomposed into a series of wavelet components, each of which is a time-domain signal that covers a specific
octave frequency band. The parameters selected for fault classification are the detailed coefficients of all the
phase current signals, measured at the sending end of a transmission line. The information is then fed into
ANN for classifying the faults. The proposed PSO-based multi-layer perceptron neural network gives 99.91%
fault classification accuracy. Moreover, it is capable of producing fast and more accurate results compared
with the back-propagation ANN. Extensive simulation studies were carried out and a set of results taken from
the simulation studies are presented in this paper. The proposed technique when combined with a wide-area
monitoring system would be an effective tool for detecting and identifying the faults in any part of the system.
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1 Introduction
Increased electricity supply demand and at the same time the
restrictions applied on power system transmission expansion
have resulted in reduced operational margins for many power
utilities. There is a need to implement new monitoring,
protection and communications technologies [1] to improve
the security of the current power system networks. The
wide-area monitoring system (WAMS) has the ability to
make optimal use of the transmission networks by using
real-time information [2]. The WAMS architecture
consists of efficient hardware and software packages with
special protection and control schemes to optimise power
transmission capacity, maintain grid integrity and to
ascertain acceptable power system performance at any time.
An advanced, accurate and early warning wide-area
protection system (WAPS) schemes for power grids that
help operators must act to prevent system instabilities and
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overloads, as well as cascade tripping that leads to power
blackouts. For this reason, the new design requirements of
WAPS schemes are very demanding [3, 4].

In contrast to conventional protection devices, which
provide local protection of individual equipment
(transformer, generator, line, etc.), the WAPS provides
comprehensive protection coverage of the entire power
system. Protective relaying involves detection, classification
and location of transmission line faults. Classification of
faults means identification of the type of fault; this
information is required for accurate fault location to carry
out quick maintenance and repair work and restoration of
the line to improve the reliability and availability of the
power supply. Owing to this, the developments of
advanced and reliable techniques for fault detection and
classification have received considerable attention in the
protection area.
1197
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Normally, the traditional method of signal analysis is based
on Fourier transforms. Fourier transform is a process of
multiplying a signal by a sinusoid in order to determine the
frequency contents of a signal. The output of the Fourier
transform is sinusoids of different frequencies. If there is a
local transient over some small interval of time in the
lifetime of the signal, the transient will contribute to the
Fourier transform but its location on the time axis will be
lost. It is found that Fourier transform is not appropriate
to analyse faults in a power system with transient-based
protection. Although the short-time Fourier transform
overcomes the time location problem to a large extent, it
does not provide multiple resolutions in time and
frequency, which is an important characteristic for
analysing transient signals containing both high and low-
frequency components. Wavelet analysis [5, 6] overcomes
the limitations of Fourier methods by employing analysing
functions that are local both in time and in frequency,
which are used to analyse the fault current waveforms in
this paper. Recently, several applications of wavelet
transform (WT) to power systems have appeared, namely,
power quality monitoring, data compression, transient
analysis, fault direction discrimination [7], fault section
estimation [8], adaptive relaying [9], auto-reclosing [10],
fault diagnosis and protection.

Earlier, adaptive Kalman filtering approach was proposed
for the protection of transmission system; however, such
protection strategy required a Kalman filter design, and if
the initial estimate of the state is wrong, or if the process is
modelled incorrectly, the filter may quickly diverge due to
the linear model chosen. In the past, several attempts have
been made for fault classification using travelling wave-
based approach. However, travelling wave method [11]
require high sampling rate and have problems in
distinguishing between waves reflected from the fault and
from the remote end of the line. Girgis and Johns [12]
used an expert-system-based approach and a phasor
measurement unit (PMU)-based approach was described in
[13] for the analysis of fault. The drawback of these
approaches is that they depend on the phasor calculation.
The application of fuzzy logic to classify the faults was used
in relaying [14]. The benefit of fuzzy logic is that its
knowledge representation is explicit, using simple ‘IF–
THEN’ relations. But logic-based expert systems have a
combinatorial explosion problem [14] when applied to a
large system. Again, the accuracy of fuzzy logic-based
schemes cannot be guaranteed for wide variations in the
system conditions.

Artificial neural networks (ANNs) have attracted a great
deal of attention in the past two decades in areas such as
pattern classification, function approximation, digital signal
processing, intelligent control, power system analysis, fault
detection, data compression, analysis for power quality
problem solution, power quality assessment, protection,
transient analysis and so on successfully, because of its
computational speed and robustness and have become an
98
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alternative to modelling of physical system such as a
transmission line [15]. Although there are many types of
neural networks, only a few of neuron-based structures are
being used commercially. One particular structure, based on
multi-layer perceptron, called back-propagation neural
network (BPNN), is the most popular neural network
architecture, which uses supervised learning to determine a
complex, nonlinear, multidimensional mathematical fitting.

This paper presents an application of particle swarm
optimisation (PSO)-based multi-layer perceptron neural
network in classifying faults in transmission lines with the
help of WTs. The proposed method is capable of
providing a reliable and fast estimation of fault types on the
basis of measurement of three-phase currents using WT.
The method classifies whether a normal state, single-line-
to-ground, double-line-to-ground, phase-to-phase or a
three-phase fault has occurred. The proposed algorithm is
tested on a 400 kV two-terminal transmission line
simulated using MATLAB/SIMULINKw. The
performance of the proposed technique is analysed by
comparing the fault classification results with the original
BPNN method for the same test data considering wide
variations in system operating conditions.

2 Wavelet analysis
Wavelet analysis [5, 6] is a mathematical technique for signal
processing and is inherently suited for non-stationary and
non-periodic wide-band signals. It helps in archiving the
localisation both in frequency and in time scale. Wavelet
analysis involves an appropriate wavelet function called
‘mother wavelet’ and performs analysis using shifted and
dilated versions of this wavelet. The continuous WT
(CWT) of a continuous signal x(t) is defined as

CWT(a, b) =
∫−1

1

x(t)C∗
a,b d t (1)

where C(t) is the mother wavelet and other wavelets
Ca,b(t) ¼ 1/

p
aC∗

a,b(t 2 b/a) are its dilated and translated
versions, the constants a and b being dilation (scale) and
translation (time shift) parameters, respectively. The CWT
at different scales and locations provides variable time–
frequency information of the signal.

The digitally implementable counterpart of CWT known
as discrete WT (DWT) is the one which is used for the
proposed fault classification. The DWT of a signal x(t) is
defined as

DWT(x, m, n) = 1���
am

0

√ ∑
m

∑
n

x(k)C∗ k − nb0am
0

am
0

( )
(2)

where a ¼ a0
m and b ¼ nb0a0

m; a0 and b0 being fixed constants
are generally taken as a0 ¼ 2 and b0 ¼ 1 and k, m and n are
integers.
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The actual implementation of DWT is done by multi-
resolution analysis (MRA) [16]. The original signal is
analysed at different frequency bands with different
resolutions. The signal is decomposed into a smooth
approximation version and a detail version. The
approximation is further decomposed into an
approximation and a detail, and the process is repeated.
This decomposition of the original signal is obtained
through successive high-pass and low-pass filtering of the
signal. The successive stages of decomposition are known
as levels. The MRA details at various levels contain the
features for the detection and classification of faults.

3 PSO-based neural network
algorithm
3.1 Artificial neural networks

The concept of ANNs have been around since the 1950s and
are biologically inspired from the view of the human brain as
a processor using interconnected neurons. The ANN is
connected like the brain with artificial neurons that are
interconnected and adaptive to the output of other
connected nodes which have modifiable parameters. One of
the most popular neural networks is the BPNN method for
solving many nonlinear problems, but the original BP
networks used to suffer mainly from the drawbacks of slow
convergence, because they used to get trapped at local
minima. Over the years, different popular, improved
variations of BPNN have been proposed to specifically
address several important issues, namely, reduction in
convergence time, ease of computational burden, reduced
memory requirement and so on [17].

In a typical multi-layer feed-forward perceptron ANN,
there exists a nonlinear mapping between the input vector
and the output vector via a system of simple interconnected
neurons. It is fully connected to every node in the next and
previous layer. The output of a neuron is scaled by the
connecting weight and fed forward to become an input
through a nonlinear activation function to the neurons in
the next layer of the network. In the course of training, the
perceptron is repeatedly presented with the training data.
The weights in the network are then adjusted until the
errors between the target and the predicted outputs are
small enough, or a pre-determined number of epochs are
passed. The training processes of the ANN are usually
complex for high-dimensional problems. A major drawback
of the commonly used gradient-based BP algorithm, which
is a local search method, is its easy entrapment at a local
optimum point, especially for those nonlinearly separable
pattern classification problems or complex function
approximation problem [18], so that BP may lead to failure
in finding a global optimal solution. Another drawback is
that the convergence speed of the BP algorithm is too slow
even if the learning goal can be achieved. The important
point to be stressed here is that the convergence behaviour
of the BP algorithm depends very much on the choices of
Gener. Transm. Distrib., 2010, Vol. 4, Iss. 10, pp. 1197–1212
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initial values of the network connection weights as well as
the parameters in the algorithm such as the learning rate
and the momentum [19].

To improve the performance of the original BP algorithm,
many researchers have concentrated on the following two
factors: (1) selection of better energy function [20]; (2)
selection of dynamic learning rate and momentum [21, 22].
However, these improvements have not completely
removed the disadvantages of the BP algorithm getting
trapped into local optima in essence. In particular, with
ANN’s structure becoming more complex, its convergence
speed will become even slower.

Genetic algorithm (GA) has been also used in training
ANNs recently, but in the training process, this algorithm
needs various GA operators. Usually, there are three kinds
of complicated evolutionary operators associated with this
algorithm, i.e. selection, crossover and mutation. Even
though its training results may be better than the ones
using the BP algorithm, but when the neural network
structure is large, the GA’s convergent speed becomes very
slow.

The PSO algorithm is an alternative to GA in training
the perceptrons of the ANN. The advantage of the PSO
over the GA is in terms of simplicity. While there are
several options for implementing a GA, for example, one
may choose tournament or proportionate selection. In the
PSO, however, there is one simple operator: velocity
calculation. With fewer operators, the number of
computations can be reduced significantly and this
eliminates the need for selection procedure for choosing the
best operator for a given optimisation.

3.2 Particle swarm otimisation

The PSO was originally introduced by Kennedy and
Eberhart in 1995. PSO optimises an objective function
by undertaking a population-based search. The PSO
algorithm has been recognised as a computational
intelligence technique and is closely related to evolutionary
algorithms. Moreover, it is tailored for optimising difficult
numerical functions and based on metaphor of human
social interaction [23]. PSO is a populated search method
for the optimisation of continuous nonlinear functions
resembling the movement of organisms in a bird flock or
fish school. It is computationally inexpensive in terms of
both memory requirements and speed. It lies somewhere
between evolutionary programming and GAs.

As in evolutionary computation paradigms, the concept of
fitness is employed and candidate solutions to the problem
are termed particles or sometimes individuals, each of
which adjusts its flying based on the flying experiences of
both itself and its companions. It keeps track of its
coordinates in hyperspace which are associated with its
previous best-fitness solution, and also of its counterpart
1199
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corresponding to the overall best value acquired thus far by
any other particle in the population. Vectors are taken as a
presentation of particles since most optimisation problems
are convenient for such variable presentations. It is adaptive
corresponding to the change of the best group value. The
allocation of responses between the individual and group
values ensures a diversity of response. The higher-
dimensional space calculations of the PSO concept are
performed over a series of time steps. The population is
responding to the quality factors of the previous best
individual values and the previous best group values. The
principle of stability is adhered to since the population
changes its state if and only if the best group value changes.

A similarity between PSO and a GA [24] is the
initialisation of the system with a population of random
solutions. Instead of employing genetic operators, the
evolution of generations of a population of these individuals
in such a system is by cooperation and competition among
the individuals themselves. Moreover, a randomised velocity
is assigned to each potential solution or particle so that it is
flown through hyperspace. While the stochastic factors
allow a thorough search of spaces between regions that are
spotted to be relatively good, the momentum effect of
modifications of the existing velocities leads to the
exploration of potential regions of the problem domain. In
this way, the adjustment by the particle swarm optimiser is
ideally similar to the crossover operation in GAs while the
stochastic processes are close to evolutionary programming.
Since the PSO algorithm has been found to be able to find
the global optimum with a large probability and high
convergence rate, it is adopted to train the multi-layer
perceptrons in this study.

A detailed description of PSO is provided below.

Step 1: Initialisation. The PSO contains ‘s ’ individual swarms
called particles. Each particle represents a possible solution to
a problem with d-dimensions and its genotype consists 2∗d
parameters. First d-parameters, xi ¼ (xi1, xi2 . . . xid),
represent the particle positions and next d-parameters,
Vi ¼ (Vi1, Vi2 . . . Vid) represents velocity components. The
velocity and position of all particles are randomly set to
within pre-defined ranges.

Step 2: Velocity updating. Velocity for particle i, at iteration
t + 1, can be updated using velocity contained in previous
iteration t, to be represented as

�Vid (t + 1) = w · �Vid (t) + c1f1(Pid
best − Pid(t))

+ c2f2(Gid
best − Pid (t))

where i ¼ 1, 2, 3, . . ., s, d ¼ 1, 2, 3, . . ., m, m ¼ the number
of input variables to be optimised. One set of all input
variables is called as one particle, s ¼ the number of
particles in a group, w ¼ inertia weight factor, varies
linearly from wmin to wmax, ranges between (0, 1), c1,
00
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c2 ¼ cognitive and social acceleration factors, respectively,
compromise the inevitable tradeoff between exploration
and exploitation, w1, w2 ¼ uniformly distributed random
numbers in the range of (0, 1). The inclusion of random
variables endows the PSO with the ability of stochastic
searching, Pid(t) ¼ current position of ith particle of input
variable d at iteration t, Pbest

id and Gbest
id are the position with

the ‘best’ objective value found so far by particle i and the
entire population, respectively; After updating, Vi should be
checked and secured within a pre-specified range to avoid
violent random change.

Step 3: Position updating. Then the new position of each
particle is evaluated as the sum of its previous position and
the corresponding updated velocity obtained in the previous
step can be represented as

�Pid (t + 1) = �Pid (t) + �Vid (t + 1)

Step 4: Memory updating. Update Pbest
id and Gbest

id when the
condition is met

Pid
best = Pid if f (Pid ) . f (Pid

best)

Gid
best = Gid if f (Gid ) . f (Gid

best)

where f (x) is the objective function subject to maximisation.

These parameters move with an adaptable velocity within
the search space and retain its own memory with the best
position it ever reached. The parameters change when
moving from the present iteration to the next iteration. At
every iteration, the fitness function as a quality measure is
calculated by using its position vector. Each particle keeps
track of its own position, which is associated with the best
fitness it has achieved so far. The best position obtained so
far for particle i keeps the track as Pi

best ¼ (Pi1
best, Pi2

best,
Pi3

best, . . ., Pid
best). The best global version particle among the

entire group of particles keeps the track of Gbest.

Step 5: Termination checking. The algorithm repeats Steps 2–
4 until certain termination conditions are met, such as a pre-
defined number of iterations or a failure to make progress for
a certain number of iterations. Once terminated, the
algorithm reports the values of Gbest and f (Gbest) as its
solution. Computational process of the proposed algorithm
depicts as shown in Fig. 1.

3.3 Training neural networks with PSO

In this application, a three-layered perceptron is considered
with four input parameters and four output parameters as
shown in Fig. 2. When designing a neural network, one
major difficulty is to determine the appropriate number of
neurons in the hidden layers. The hidden layer is
responsible for the internal representation of the data and
the information transformation between input and output
layers. If there are too few neurons in the hidden layer, the
IET Gener. Transm. Distrib., 2010, Vol. 4, Iss. 10, pp. 1197–1212
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Figure 2 Architecture of multi-layer perceptron neural
network

Figure 1 Flowchart for the PSO algorithm
T Gener. Transm. Distrib., 2010, Vol. 4, Iss. 10, pp. 1197–1212
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network may not contain sufficient degrees of freedom to
form a representation. If too many neurons are used, the
network might become over trained. Therefore an optimum
design for the number of neurons in the hidden layer is
required. To achieve good performance, it is evaluated for
various values of neurons in hidden layer. A topology with
five neurons in hidden layers showed the best performance
for the problem. To evolve the network weights with PSO,
the particle will be represented as group of weights; there
are 4∗5 + 5∗4 ¼ 40 weights, so the particle consists of 40
real numbers.

In the training of the multi-layer perceptrons by the PSO,
the representation of the connection weight matrix of the ith
particle is as

W = W [1]
i , W [2]

i

{ }
(3)

where Wi
[1] and Wi

[2] represents the connection weight matrix
of the ith particle between the input layer and the hidden
layer, and that between the hidden layer and the output
layer, respectively.

Moreover, the vector of the position of the previous best
fitness value of any particle is represented by

P = P[1]
i , P[2]

i

{ }
(4)

where Pi
[1] and Pi

[2] represent the position of the previous
best-fitness value of the ith particle, between the input layer
and the hidden layer, and that between the hidden layer
and the output layer, respectively.

The index of the best particle among all the particles in the
population is represented by the symbol b. So the best matrix
is represented by

Pb = P [1]
b , P [2]

b

{ }
(5)

where Pb
[1] and Pb

[2] represent the position of the best particle
among all the particles, between the input layer and the
hidden layer, and that between the hidden layer and the
output layer, respectively.

The velocity of the particle i is denoted by

V = V [1]
i , V [2]

i

{ }
(6)

If m and n represent the index of matrix row and column,
respectively, the manipulation of the particles are as follows

V
[j]
i (m, n) = V

[j]
i (m, n) + c1f1(P

[j]
i (m, n) − W

[j]
i (m, n))

+ c2f2(P
[j]
b (m, n) − W

[j]
i (m, n)) (7)

W
[j]
i = W

[j]
i +V

[j]
i (m, n) (8)
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where j ¼ 1, 2; m ¼ 1, . . ., Mj; n ¼ 1, . . ., Nj; Mj and Nj are
the row and column sizes of the matrices W, P and V; c1 and c2

are cognitive and social acceleration factors, respectively, and
f1 and f2 are uniformly distributed random numbers in the
range of (0, 1).

Equation (7) is employed to compute the new velocity of
the particle based on its previous velocity and the distances
of its current position from the best experiences both in its
own and as a group. Updated velocity must be within the
specified range. If it violates the limits, it is set to a popular
value. The maximum velocity is assumed as ‘5’ and the
minimum velocity as ‘25’. The initial velocities of the
initial particles were generated randomly in the range of (0,
1). After each iteration, if the calculated velocity was larger
or smaller than the maximum velocity or the minimum
velocity, it would be reset to ‘5’ or ‘25’.

The velocity change of PSO in (7) consists of three parts.
The first part is the momentum part, which prevents the
velocity to be changed abruptly. The second part is the
cognitive part, which represents the private thinking of
itself, meaning learning from its own flying experience.
The third part is the social part, which represents the
collaboration among the particles learning from the group
best flying experience. The balance among these three parts
determines the balance of global and local search ability.
Then the new position of each particle is evaluated as sum
of its previous position and corresponding updated velocity
using (8).The fitness of the ith particle is expressed in
terms of an output mean-squared error of the neural
networks as follows

f (Wi) = 1
S

∑S

k=1

∑O

l=1

{tkl − pkl (Wi)}
2

[ ]
(9)

where f is the fitness value, tkl is the target output, pkl is the
predicted output based on Wi, S is the number of training
set samples and O is the number of output neurons. These
operations are repeated for a predefined number of
iterations or until fitness is reached.
02
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4 Application of the proposed
PSO method in WAMS
4.1 PMU data

The Bonneville Power Administration was the first utility to
implement synchrophasors (PMUs) in its WAMS. The
essential feature of the PMU technique is that, during any
operating conditions, it measures voltages and currents
of a power system in real-time with precise-time
synchronisation, with which to monitor and control a
power system. PMU allows accurate comparison of
measurements over various locations in a wide area, as well
as potential real-time measurement-based control actions.
This system performance can be improved with the help of
information availability and information interpretation
provided by system dynamic information through PMUs
[25] from all over the grid. Very fast recursive discrete
Fourier transform (DFT) are normally used in phasor
calculations [26].

The different PMUs over a wide area power system are
synchronised through a Global Positioning Satellite (GPS)
system. The GPS system provides continuous precise
timing at less than 1 ms level.

The simple block diagram of synchronised phasor
measurement system (PMU) is as shown in Fig. 3. The
signals from GPS transmission is received by the receiver
section, which delivers a phase-locked sampling clock pulse
to the analogue-to-digital converter system. The sampled
data are converted to a required format which represents
the phasor of the sampled waveform. In WAPS schemes,
data from synchrophasor placed at remote sites will be
transmitted via communication links to a data concentrator
in a common time reference frame, for processing and
implementation of protection and control algorithms as
well as being recorded for system analysis. The format of
synchronised data transmission using communication links
has been discussed in IEEE standard 1344-1995 [26].
With the rapid development of fibre-optic and digital-
communication systems, multiplexed digital channels are
often available for use with transmission-line protection.
Therefore high speed for data transfer can be achieved so
Figure 3 Block diagram of the synchronised phasor measurement system (PMU)
IET Gener. Transm. Distrib., 2010, Vol. 4, Iss. 10, pp. 1197–1212
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that the transmission delay can be added only a few
milliseconds to the tripping decision time of the protection
scheme. When currents are measured in this fashion, it is
important to have a high enough resolution in the
analogue-to-digital converter to achieve sufficient accuracy
of representation at light loads. A 16-bit converter or
equivalent generally provides adequate resolution to read
load currents, as well as fault currents.

4.2 Architecture of the wide
area platform

The architecture of WAMS platform for a large power system
network is shown in Fig. 4. Wide area protection is a highly
complex task. If a disturbance occurs in any one of the
interconnected systems, it is very difficult to arrive at a
diagnosis in a short period of time. The wide knowledge of
the system is essential in resolving the problem. Owing to
the nature of the complexity, isolated algorithms are not
suitable for diagnosing the wide area disturbance. There is
a need for cooperating expert system algorithms, which can
assist the local experts during emergencies and help solve
routine work (overall system and individual system status
report, etc.) that needs to be carried out during the system
wide disturbance.
T Gener. Transm. Distrib., 2010, Vol. 4, Iss. 10, pp. 1197–1212
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PMUs measure the significant signals such as all bus
voltages and line currents. These measurements are sent to
its own phasor data concentrator (PDC) present at each
utility centre, and then the measurements from each
utility’s PDC are sent to a central control centre (CC). The
PDC correlates the data by time-tag to create a system-
wide measurement. The PDC exports these measurements
as a data stream as soon as they have been received and
correlated. Multiple applications can receive these data
stream and use it for display, recording, and control
functions. Standard communication systems are adequate
for most phasor data transmission. The issues such as
speed, latency, reliability and communication speed (data
rate) during data communications process depends on the
amount of phasor data being sent and the number of
messages/s. In case, if PMU sending 10 phasors at 30
messages/s, the data rate to be about 17 kbps. A analogue
modem operating at 33.6 kbps is fast enough for this
application. However, if the rate increases to 60 messages/s,
a faster system, such as a 56 kbps digital link, is to be used.

The systems associated with the communication delays or
latency are mainly data concentrators, transducers, data size
of PMU output, multiplexing and transitions, window
size of data, processing time, involved communication
links. It is imperative for the utility to choose a right
Figure 4 Architecture of WAMS platform for large networks
1203
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communication link depending upon the control action to be
performed.

Some of the practical considerations for implementation
are as follows.

1. Complexity. Conventional control is largely carried out
locally. A wide-area control scheme introduces new
interdependencies over the network that must be studied
with care.

2. Reliability. There is a significant concern that dependence
on communication systems introduces vulnerability,
particularly where high-speed communication is required.

3. Speed of response. Some protection and control schemes
that require a finite response with in a time are susceptible
to communications and process delays.

Based on phasor measurement from both sides of
transmission lines, WAMPCS monitors actual power flow,
available transmission capacity, average temperature,
thermal limits and so on, and initiates commands to local
control equipment for improving the performance of the
power system network and minimising congestion. It
detects incipient instabilities and abnormal conditions,
evaluates most suitable countermeasures and initiates
automatic actions to protect power systems from large area
disturbances. Automatic commands can be initiated to
existing control systems (SCADA, EMS etc.) if those
systems are able to perform them in due time. Otherwise,
the commands are sent directly to PMUs or other control
equipment in the stations. For the purpose of post-
disturbance analysis, the WAMCP centre do not require to
meet stringent requirements of the data networks such as
real-time applications. Some delay can be tolerated during
the retrieval of data on a regular schedule for the purpose
of post-analysis.

Adaptive relays accept the change of their operating
characteristics according to their power system conditions.
The important characteristic that makes them vital to the
adaptive relaying concept is that the relay parameters can be
determined through the software and can be altered by
communication equipment from its remote CC. Recently,
with the use of combined synchronised PMUs and WAPS,
adaptive protection systems can be effectively used to
achieve better system security.

In this paper, a process with the knowledge base collected
from WAMS using PSO–ANN is presented for ready post-
fault diagnosis process immediately after the detection of
fault. The approach is particularly important for post-fault
diagnosis of any mal-operation of relays following a
disturbance in the neighbouring line connected to the same
substation/network. This may help in improving the fault
monitoring/diagnosis process and coordination of the
protective relays, thus assuring secure operation of the
04
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power systems. Nowadays, the traditional centralised
SCADA solution with local protection systems are merging
into a WAPS subject to new requirements with respect to
their performance and availability. The different current
signals measured with the use of PMUs at different
locations and are sent to PDC at the CC. The PDC
exports these measurements as a data stream as soon as
they have been received and correlating the data by time-
tag. The system protection centre receives data stream and
makes a wide-area protection depending on the wide-area
view. The proposed method can be used in WAPS to find
the type of fault and pre-planned actions can be taken to
minimise the wide-area disruptions and faulted section can
be isolated from the healthy section. The proposed method
makes the analysis of large fault disturbance data sets of
WAMS. To apply this method in real time, automatic
detection at the beginning of incidents is necessary. As
soon as a disturbance has been detected, the recent samples
of current signals are collected and taken into processing.
The first goal of the approach is the identification of the
type of fault occurred in the line. The approach is purely
related to a substation-level power system network as
shown in Fig. 5 and can be extended and implemented at
CC of larger systems using WAMS as shown in Fig. 4.

The prototype system consists of a three-phase power
supply, a transmission line represented by lumped
parameters connecting a load. Faults were created at
different places on transmission line [27].

Generator

Voltage rating: 400 kV, 50 Hz.

Total impedance of generator and transformer together:
(0.2 + j 4.49) V.

Transmission line

† Positive and negative sequence resistance/unit
length ¼ 0.02336 V/km.

† Zero sequence resistance/unit length ¼ 0.38848 V/km.

† Positive- and negative-sequence inductance/
length ¼ 0.95106 mH/km.

Figure 5 Sample power system network
IET Gener. Transm. Distrib., 2010, Vol. 4, Iss. 10, pp. 1197–1212
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† Zero-sequence inductance/length ¼ 3.25083 mH/km.

† Positive- and negative-sequence capacitance/unit
length ¼ 12.37 nF/km.

† Zero-sequence capacitance/unit length ¼8.45 nF/km.

Load

Load impedance ¼ (720 + j1.11) V corresponding to load
of 200 MVA at 0.9 pf.

5 Implementation of the
proposed fault classification
5.1 Pre-processing of the training
and test patterns

Line currents Ia, Ib and Ic at a frequency of 50 Hz measured
simultaneously by PMUs at the sending end of the line are
used to classify the types of the fault among LG, LL,
LLG, LLL and healthy (normal) conditions. The GPS
clock generator can be used in the PMUs to provide an
accurate and reliable external reference clock signal. These
current signals are being decomposed into nine levels using
T Gener. Transm. Distrib., 2010, Vol. 4, Iss. 10, pp. 1197–1212
i: 10.1049/iet-gtd.2009.0488
the MRA algorithm. Since for N-level decomposition, 2N

samples are required. The current signals with 512 samples
at a sampling period of Ts ¼ 7.828 × 1025 s are used in
this work. The input contains 512 (12.77 kHz) samples
which are passed through high pass filter (HPF) and low
pass filter (LPF), and the corresponding approximate and
detailed coefficients are recorded. The high-frequency noise
signals are filtered and the corresponding seventh2level
detailed wavelet coefficients are calculated to know the
second and third2order harmonic components in the
faulted current signals.

During fault condition, the detailed (HPF) coefficients of
seventh level with the frequency band of 99–199 Hz have
higher magnitudes owing to the presence of second and
third-order harmonic content in the line currents. From
the previous studies, it is found that Daubechies mother
wavelet is having a good capability to capture the time of
transient occurrence and the extraction of frequency
features during power system faults. In the proposed
algorithm, ‘Db1’ mother wavelet is used to get the DWT
coefficients for the classification of different types of faults.

With the use of these detailed coefficients, various
parameters i.e. Sa, Sb, Sc, Qa, Qb and Qc are calculated,
Figure 6 Simulated line current signals measured at sending end
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where Sa, Sb and Sc are the sum of the seventh2level
detailed coefficients of line currents Ia, Ib and Ic,
respectively, and Qa, Qb and Qc the sum of the absolute
values of the seventh-level detailed coefficients of line
currents Ia, Ib and Ic, respectively.

For instance, the simulated fault current waveforms
obtained for the various operating conditions at sending
end for the faults types such as AG, AB, ABG and ABC
including normal operating conditions are shown in Fig. 6.
In this figure, the higher fault current magnitudes
compared with the normal current signal during the
corresponding fault can be observed. The x-axis in Fig. 6
represents the time in seconds and y-axis represents the
instantaneous current signals in amperes.

The variation of indices Qa, Qb and Qc and |(Sa + Sb + Sc)|
during LLG fault at different locations of the transmission
line and various incidence angles with solid fault are
depicted in Figs. 7a–7d.
06
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5.2 Simulation of training and test cases

After calculating above parameters, the training sample of
|(Sa + Sb + Sc)|, Qa, Qb and Qc for various types of faults
are given as input variables to build neural network. The
data sets are created by considering different operating
conditions, i.e. the different values of inception angles
ranging between 08 and 3608, different values of fault
resistances between 0 and 200 V and different fault
distances from 0 to 300 km as follows:

1. Fault type:
AG,BG,CG,ABG,BCG,CAG,AB,BC,CA,ABC.

2. Fault locations:

Training: 12,30, 48, 66, . . . , 282 km (in steps of 18 km).

Testing: 0.25, 5, 9.75, . . ., 300 km (in steps of 4.75 km).
Figure 7 Variation for different values of distances and inception angles during the LLG (BCG) fault

a Qa

b Qb

c Qc

d |(Sa + Sb + Sc)|
IET Gener. Transm. Distrib., 2010, Vol. 4, Iss. 10, pp. 1197–1212
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3. Fault inception angle:

Training: 08, 208, 408, 608, . . . , 3408 (in steps of 208).

Testing: 08, 48, 88, 128. . . 3598 (in steps of 48).

4. Fault resistance (V):

Training: 0, 12, 24, . . ., 200 V (in steps of 12 V).

Testing: 0, 10, 20, . . ., 200 V (in steps of 10 V).

Therefore during training of the fault data with ANN, the
fault cases were carried out at 16 different locations with 18
different inception angles and with 17 various fault
resistances. Thus a total of 16 × 18 × 17 ¼ 4896 training

Table 1 Neural network desired output

Fault type ‘A’ ‘B’ ‘C’ ‘G’

AG 1 0 0 1

BG 0 1 0 1

CG 0 0 1 1

ABG 1 1 0 1

BCG 0 1 1 1

CAG 1 0 1 1

AB 1 1 0 0

BC 0 1 1 0

CA 1 0 1 0

ABC 1 1 1 0

Figure 8 Overview of proposed fault classification scheme using ANN

Table 2 ANN output for various faults at 608 fault inception angle and at 66.75 km away from sending end

Fault type Inception angle ¼ 608, fault distance ¼ 66.75 km

Rf ¼ 0 V Rf ¼ 200 V

‘A’ ‘B’ ‘C’ ‘G’ ‘A’ ‘B’ ‘C’ ‘G’

AG 0.9064 0.0630 20.0376 1.0237 1.0508 0.0610 0.0584 1.0896

BG 0.0150 0.9327 20.0020 0.9900 20.0126 0.9854 0.0551 1.0712

CG 0.0548 0.0367 0.8962 1.0275 20.0619 20.0206 0.9015 1.0951

ABG 0.9508 1.0664 20.0061 1.0649 0.9251 0.9206 0.0438 1.0702

BCG 20.0674 1.0025 0.9792 1.0759 20.0686 1.0370 0.8928 0.8628

CAG 1.0572 0.0450 1.0148 1.0563 1.0745 20.0506 0.9078 0.9317

AB 1.0185 0.9421 20.0077 0.0162 1.0187 0.9283 20.0416 20.0422

BC 0.0409 0.9295 0.9419 0.0591 20.0319 0.9726 0.8755 0.0145

CA 0.9882 0.0333 1.0345 20.0453 1.0972 20.0422 0.9616 0.0473

ABC 0.9342 1.0612 0.9963 20.0132 0.9837 0.9401 0.9639 20.0673
T Gener. Transm. Distrib., 2010, Vol. 4, Iss. 10, pp. 1197–1212 1207
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samples are created for each fault resulting into a training data
set of 4896 × 10 ¼ 48 960 training samples for all ten types
of faults.

The graphical view of training data set considered for
training purpose is shown in Fig. 7. The training of neural
network can be performed either using measurement data
taken from the network or accessing historical record of
fault data set. Whereas, in this paper, the training data set
is generated by simulating MATLAB software program.
For training purpose, the four outputs of ANN represented

with ‘A’, ‘B’, ‘C’ and ‘G’ are assigned with values ‘1’ for
faulted phase and ‘0’ for healthy phase as shown in Table 1.

In order to have a good accuracy of ANN, it is evaluated
with more number of fault cases at different system
conditions. Then, to test the proposed algorithm, the fault
cases were carried out at 64 different locations with 90
different inception angles and with 21 various fault
resistances. Thus, a total of 64 × 90 × 21 ¼ 120 960
observations for each type of faults were simulated. As a
result, total observations of 120 960 × 10 ¼ 1 209 600

Table 3 ANN output for various faults at 1358 fault inception angle and at 119 km away from sending end

Fault type Inception angle ¼ 1358, fault distance ¼ 119 km

Rf ¼ 0 V Rf ¼ 200 V

‘A’ ‘B’ ‘C’ ‘G’ ‘A’ ‘B’ ‘C’ ‘G’

AG 1.0060 0.0254 20.0169 1.0782 1.0549 0.0465 0.0004 0.9190

BG 0.0293 0.9690 20.0100 1.0031 20.0274 0.8953 20.0434 1.0010

CG 20.0429 0.0255 0.9255 0.9389 20.0276 0.0058 0.9582 0.9815

ABG 0.9056 0.9448 20.0489 0.9748 0.8821 1.0447 0.0277 0.9715

BCG 20.0170 0.8969 0.9888 1.0033 0.0504 0.9666 1.0066 0.9899

CAG 0.8738 0.0495 0.8743 0.8987 0.9501 0.0560 0.8771 1.0862

AB 0.9482 1.0278 0.0131 0.0450 0.8999 1.0884 0.0203 0.0445

BC 0.0224 1.0346 0.9251 20.0221 20.0222 1.0136 1.0060 20.0294

CA 1.0322 0.0048 0.9582 0.0318 1.0613 20.0267 0.9020 0.0474

ABC 1.0262 0.9932 0.9738 0.0095 0.9684 0.9446 1.0090 20.0181

Table 4 NN output for various faults at 2108 fault inception angle and at 180.75 km away from sending end

Fault type Inception angle ¼ 2108, fault distance ¼ 180.75 km

Rf ¼ 0 V Rf ¼ 200 V

‘A’ ‘B’ ‘C’ ‘G’ ‘A’ ‘B’ ‘C’ ‘G’

AG 0.9286 0.0284 0.0065 0.9479 0.9133 20.0077 0.0272 1.0035

BG 0.0170 0.9276 0.0413 0.9326 0.0640 1.0413 0.0032 1.0878

CG 0.0532 20.0458 0.9545 1.0644 0.0672 20.0320 0.8795 0.9293

ABG 1.0333 1.0300 20.0347 1.0423 1.0839 0.9287 0.0526 1.0733

BCG 0.0332 1.0481 1.0323 1.0879 0.0022 0.9203 0.9949 0.8844

CAG 0.8869 0.0116 0.9966 0.9939 0.9147 20.0232 0.9366 0.8757

AB 0.9664 0.9736 20.0107 20.0094 0.9679 0.8914 20.0384 0.0112

BC 0.0365 1.0767 0.9669 0.0042 0.0197 1.0858 1.0683 20.0407

CA 0.8635 20.0168 0.8811 0.0397 1.0925 0.0253 0.9493 20.0054

ABC 1.0194 1.0531 0.9664 0.0095 0.9454 1.0634 0.8777 0.0412
08 IET Gener. Transm. Distrib., 2010, Vol. 4, Iss. 10, pp. 1197–1212
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were made for all types of faults for testing purpose, whereas
most of the training samples did not coincide with the testing
data set.

5.3 Test results of PSO–ANN-based
classifier

The overview of a proposed protective relaying solution based
on PSO–ANN is shown in Fig. 8. On the occurrence of a
fault, the fault detection unit activates the fault
classification unit. The proposed technique is tested using
simulated data obtained using MATLAB/SIMULINKw

software [17]. The test cases generated various operating

conditions are processed through PSO–ANN to test the
proposed algorithm. While implementing PSO to train
ANN, the inertia weight w which is linearly decreasing
from 0.9 to 0.4, c1 and c2 are selected as 2 and the number
of particles considered as s ¼ 40. The end conditions to
terminate PSO are (i) Gbest should be below tolerance value
‘1’ and (ii) the maximum number of iterations reached.

Tables 2–5 present some of the fault classification test
results at various operating conditions. The performance of
PSO–ANN for different fault types at 66.75 km of the
line for 608 fault inception angle at different fault
resistances Rf ¼ 0 V and Rf ¼ 200 V are shown in

Table 5 ANN output for various faults at 3308 fault inception angle and at 242.50 km away from sending end

Fault type Inception angle ¼ 3308, fault distance ¼ 242.50 km

Rf ¼ 0 V Rf ¼ 200 V

‘A’ ‘B’ ‘C’ ‘G’ ‘A’ ‘B’ ‘C’ ‘G’

AG 1.0999 20.0617 0.0144 0.9895 1.0229 20.0630 0.0201 1.0410

BG 20.0400 0.9292 0.0317 1.0096 0.0644 0.9064 20.0252 1.0192

CG 20.0123 0.0342 1.0183 1.0246 20.0325 20.0084 0.8871 1.0720

ABG 0.9297 1.0965 20.0639 1.0226 0.8629 0.9263 0.0607 0.9253

BCG 20.0068 0.8642 1.0045 1.0704 20.0662 1.0450 1.0780 0.9607

CAG 1.0899 20.0682 1.0052 0.8631 0.9839 20.0262 0.8975 0.9111

AB 1.0440 1.0091 20.0162 20.0582 0.9700 1.0132 0.0256 20.0570

BC 20.0651 0.9945 0.9040 0.0157 0.0077 1.0968 1.0430 20.0030

CA 0.8914 0.0319 1.0128 0.0279 0.9998 20.0485 1.0332 20.0205

ABC 0.8829 1.0573 0.9009 0.0246 0.9822 1.0874 1.0164 20.0081

Table 6 Summary of PSO–ANN, BPNN and SVM-based test results for nominal power system

S. no. Faults type PSO–ANN method BPNN method [29] SVM [30]

Success % Success Success % Success % Success

1 AG 120 944 99.98 120 921 99.97 94.44

2 BG 120 927 99.97 120 892 99.94 96.29

3 CG 120 855 99.91 120 810 99.88 91.67

4 ABG 120 960 100.00 120 959 99.99 94.44

5 BCG 120 960 100.00 120 960 100.00 98.14

6 CAG 120 818 99.88 120 782 98.85 93.51

7 AB 120 746 99.82 120 677 99.77 98.14

8 C 120 960 100.00 120 960 100.00 100.00

9 CA 120 412 99.54 120 232 99.40 92.51

10 ABC 120 960 100.00 120 960 100.00 –

Total tested samples 1 209 600 1 208 542 99.91 1 208 153 99.88 96.01
T Gener. Transm. Distrib., 2010, Vol. 4, Iss. 10, pp. 1197–1212 1209
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Table 2. The respective PSO–ANN output values ‘A’, ‘B’,
‘C’ and ‘G’ for AB fault type with Rf ¼ 0 V are 1.0185,
0.9421, 20.0077 and 0.0162 depict that the faults are
involved in phases A and B only. This method takes a
particular phase to be involved with fault if its
corresponding PSO–ANN output value is near to ‘1’, else
it categorises the phase to be healthy. Similarly, Table 3
provides the fault classification results for various faults at
119 km of the line for 1358 fault inception angle at
different fault resistances. Table 4 shows the fault
classification results for various fault conditions at
180.75 km of the line for 2108 fault inception angle at
different fault resistances, whereas Table 5 presents for
3308 fault inception angle and a fault at 242.50 km of the

Figure 9 Relationships between the normalised MSE and
epochs during training for PSO-based ANN and BP-based
perceptrons
10
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line. The results demonstrate the suitability of the proposed
method even for untrained test samples.

5.4 Comparison with the BPNN- and
SVM-based classification scheme

The performance of PSO–ANN-based fault classifier for all
types of faults is verified and the classification results are
summarised as in Table 6. From Table 6, it is observed
that the PSO–ANN provides a very good classification
since the % success in fault classification varies from
99.54% to a maximum value of 100%, with 99.91% of
average success including all type of operating conditions.
The minimum value of % success is obtained as 99.54
while detecting CA faults, because some of these faults are
detected as CAG fault and mismatch in detecting the
ground involvement.

The BP under the neural network toolbox in MATLAB
[28] software is employed as the benchmarking tool for
comparison. In order to compare the proposed classification
method with the BPNN method, the data sets that are
already created during both the learning phase and testing
phase are being used. In BPNN implementation [29], the
mean square error (MSE) was set to 0.01 and the
maximum number of times of training was set to 400. Bias
weights and momentum factors are used to obtain
optimum results in minimum time. The % success in fault
classification using BPNN method is varies from 98.85% to
a maximum value of 100%, with 99.88% of average success
including all type of operating conditions. Similarly, the
classification results for all types of faults (except ABC
Figure 10 Comparison of % failure in fault classification by applying PSO–ANN, BPNN and SVM methods
IET Gener. Transm. Distrib., 2010, Vol. 4, Iss. 10, pp. 1197–1212
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faults) using SVM [30] classifiers are summarised in Table 6.
It is observed that % success in fault classification with SVM-
based method varies from 92.51 to a maximum value of
100%, with 96.01% as an average success rate.

Relationships between the normalised MSE and epochs
during training of PSO-based ANN and BPNN method is
shown in Fig. 9. Using the PSO–ANN method, it is
found that the time taken for training the full training data
set is approximately 1.462 s, and the time taken for testing
the single-fault sample data is 0.036484 s. The BPNN
method took 2.384 s to train the same data set. It is noted
that testing cases of the PSO-based network are able to
give a successful prediction rate of up to 99.91%, which is
higher than BPNN (99.88%) and SVM (96.01%)-based
methods. The percentage failure in classifying the testing
data set using PSO–ANN and BPNN methods is shown
in Fig. 10. It is observed that, with the use of PSO-based
perceptron method, the highest failure of 0.18% is obtained
when classifying AB fault, whereas 1.15% failure in
classifying the CAG faults was obtained with the
application of BP-based perceptron method. Moreover, the
PSO-based perceptron exhibits much better and faster
convergence performance in the training process as well as
better classification than those by the BP-based perceptron.
The PSO–ANN is a simple algebraic process, so it
achieves the stable weights in less number of iterations and
learns the new knowledge quickly compared with BPNN.
It can be concluded that the PSO-based perceptron
performs better than the SVM and BPNN-based
perceptron. PSO–ANN method classifies fault type more
perfectly during all operating conditions compared with
BPNN and SVM. Moreover, the PSO–ANN network is
able to identify the testing patters almost immediately.

6 Conclusion
This paper presents the application of a PSO-based
perceptron approach for prediction of fault type with the
help of WT. The optimisation algorithm is demonstrated
to be able to provide model-free estimates in deducing the
output from the input. Various case studies have been
studied including the variation of fault distance, inception
angle and fault resistances. Both PSO-based perceptron
approach and BPNN method have been implemented. The
performance shown demonstrates that the proposed
technique gives a very high accuracy (99.912%) in
classification of the power system faults. It is demonstrated
from the training and verification simulation that the
prediction results of fault type are more accurate, when
compared with the conventional BP-based perceptron and
SVM methods. Therefore the PSO-based perceptron
approach can be used as an attractive and effective approach
for classification algorithm of power system faults.
T Gener. Transm. Distrib., 2010, Vol. 4, Iss. 10, pp. 1197–1212
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